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We report the results of numerical investigations of the steady-68&eand finite-initial-conditiongFIC)
spatial persistence and survival probabilities (fbt 1)-dimensional interfaces with dynamics governed by the
nonlinear Kardar-Parisi-Zhang equation and the linear Edwards-Wilki(B®v) equation with both white
(uncorrelategland coloredspatially correlatednoise. We study the effects of a finite sampling distance on the
measured spatial persistence probability and show that both SS and FIC persistence probabilities exhibit simple
scaling behavior as a function of the system size and the sampling distance. Analytical expressions for the
exponents associated with the power-law decay of SS and FIC spatial persistence probabilities of the EW
equation with power-law correlated noise are established and numerically verified.
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I. INTRODUCTION spatial derivatives ardinite. The spatial persistence prob-
abilities obtained for these two different ways of sampling

The concept of temporal persisterdd, which is closely Fe initial point are denoted byPsdXoXo+X) and

related to first-passage statistics, has been used recently
study various non-Markovian stochastic processes both the
retically [2,3] and experimentally4—7]. Another quantity of
interest in the study of the statistics of spatially extende
systems is its natural analog, tispatial persistence prob-
ability. This idea has been investigated theoreticgfy in
the context of(d+1)—dimensional Gaussian interfaces with
dynamics described by linear Langevin equations, where th
variable undergoing stochastic evolution is the heigxt t)

of the interfacial sitegx is the lateral position along the
interface and is the timg. The spatial persistence probabil-
ity of fluctuating interfaces, denoted B(xgy,Xy*X), is sim-
ply the probability that the height of a steady-state interfac
configuration, measured at a fixed tifgedoes notreturn to
its “original” value h(xg,tp) at the initial pointx, within a

ric (X0, Xg+X), respectively.
The values of the exponentizs and 6 ¢ for interfaces

ith dynamics described by a class of linear Langevin equa-
ions have been determined in RE8] using a mapping be-
tween the spatial statistical properties of the interface in the
steady state and the temporal properties of stochastic pro-
cesses described by a generalized random-walk equation. It
furns out that for these systemss is equal to either 3/2
-n for 1/2<n<3/2 or 0 for n>3/2, wheren=(z-d
+1)/2, d is the spatial dimension, ardis the standard dy-
namical exponent of the underlying Langevin equation. The
FIC spatial persistence exponent is found to have the value
e, =6(n), whered(n) is a temporal persistence exponent for
the generalized random-walk problem to which the spatial

) . statistics of the interface is mapped. Two exact results for
distancex measured fronx, along the interface. In the long-

. o : ; .. 6(n) are available in the literatur@(n=1)=1/2, correspond-
time, steady-state limit, the spatial persistence pI’ObabI|It¥ng to the classical Brownian motioi®] and #(n=2)=1/4
P(xg,%o+X), which depends only o for a translationally '

) ) ) o corresponding to the random acceleration probj&gj.
:nvagant |n|t3e(rface,+ h)a f Q%erg)shomﬂhto _e>t<h|b|tt_a powerl-t Very recently, experimental measurements of the spatial
aw decay,FiXo, Xptx) =X . UNne of the INteresting resutts persistence probability have been performégdfor a system
reported in Ref[8] is that the spatial persistence exponént ., stion fronts in papgthat is believed to belong to the
can take two values determined by the initial conditions OrKardar-Parisi-ZhangKPZ) [11] universality class. However,
selection rules imposed on the starting poigit (1) =655

he d . ) iod the FIC spatial persistence probability is not investigated at
Lneifosrtrﬁlil/ ]}'r'osrtr‘?‘;encst?ep;{:'ssffngesz(;do;i?gg foi?ig]uﬁ;ion all in this work. Instead, the authors analyze a “transient”

e o 'spatial persistencg@.e., the probability is measured by sam-
and (2) 6=6gc, the so-calledinite-initial-conditions(FIC) b P ce b y y

) it th ! ; ; df pling over all the sites of a transient interfacial profile ob-
persistence exponent It the samplingdgfis performed from - ,ineq pefore the steady state is reagh@tlis transient spa-

asubsebf steady-state sites where the height variable and itﬁal persistence is completely different from the FIC spatial

persistence, which is measured in the steady-state regime by
sampling a special class of initial sites. As a consequence,
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In this paper, we present the results of a detailed numeritrast to the power-law behavior of the temporal persistence
cal study of spatial persistence in a class of one-dimensiongrobability (which, we recall, measures the probability of not
models of fluctuating interfaces. Our interest in analyzing theeturning to the initial positiop the temporal survival prob-
spatial persistence of fluctuating interfaces is motivated to ability exhibits an exponential decay at long times, providing
large extent by their importartand far from completely un-  information about the underlying physical mechanisms and
derstoodirole in the rapidly developing field of nanotechnol- their associated time scalgs5). In this study, we make the
ogy, where the desired stability of nanodevices requires unfrst attempt to analyze the behavior of thpatial survival
dersfcandlng and controlling _thermal |nterfaC|_aI_ﬂu<_:tuat|ons. robability, S(x, Xo+X), defined as the probability of the in-

In this context, the study of first-passage statistics in gener erface height between points (which is an arbitrarily cho-

or of the persistence probabilitppoth spatial and temponal P L ;
[3,8] in particular, turns out to be a very useful approach. TSen initial position andxy+X not reaching the average level

address this problem we consider stochastic interfaces Witf]h> Lrather than the original valug(x,, t)]. We. present nu-
dynamics governed by the Edwards-Wilkins@BW) [12] mer_|ca_l results f0|S(_xo,x9+x) _that show that its spatial be?
and KPZ equations. For the EW equation, we consider botRavior in the SS regime is neither power law nor exponential,
white noise(uncorre|ated in both space and ti)ﬂrm‘]d “col- while in the FIC regime, it becomes very similar to the Spa-
ored’noise that is correlated in space but uncorrelated ifial persistence probabilityfric(Xo, Xo+X).
time. The effect of noise in spatially distributed systems is an The paper is organized as follows. In Sec. Il, we define
interesting problem by itself and has been widely studiedhe models studied in this paper, review existing analytical
[13]. In this paper, we investigate the effects of noise statisresults about their spatial persistence properties, and present
tics on the spatial structure of fluctuating interfaces using théew analytical expressions for the spatial persistence expo-
conceptual tool of spatial persistence probability. Using thenents for EW interfaces with colored noise in arbitrary spa-
isomorphic mapping procedure of R¢8], we derive exact tial dimensions. In Sec. lll, we describe the numerical meth-
analytical results for the spatial persistence exponentsl of ods used in our study and discuss how the spatial persistence
+1)—dimensional EW interfaces driven by power-law corre-and survival probabilities are measured in our numerical
lated noise. We then compare our analytical results wittsimulations. The results obtained in dur+1)—dimensional
those obtained from numerical integrations of the correnumerical investigations are described in detail and dis-
sponding stochastic equations. The use of power-law correzussed in Sec. 1V, for both discrete stochastic solid-on-solid
lated noise in the EW equation allows us to explore the situmodels(Sec. IV A) and the spatially discretized EW equa-
ation where the two spatial persistence exponeitsand  tion with colored noisg(Sec. IV B). Section V contains a
O c are different. summary of the main results and a few concluding remarks.
Our numerical study also provides a characterization of
the scaling behavior of spatial persistence probabilities as
functions of the system size. Information about the system- |. STOCHASTIC EQUATIONS FOR FLUCTUATING
size dependence of persistence probabilities is necessary for INTERFACES
extracting the persistence exponents from experimental and ) )
numerical data. In studies of the scaling behavior of spatial We have performed a detailed numerical study of the spa-
persistence probabilities, one has to consider another impofi@l persistence of1+1)-dimensional fluctuating interfaces,
tant length scale that always appears in practical measuréthere the dynamics is described by the well known EW
ments: this is thesampling distance’x which represents the €guation
“nearest-neighbor’spacing of the uniform grid of spatial Ih(x,t)
points where the height variable(x,ty) is measured at a —
fixed timety. The sampling distancéx is the spatial analog It
of the “sampling time[14,15 that represents the time inter- or alternatively by the KPZ equation
val between two successive measurements of the height at a
fixed position in experimental and computational studies of dh(xt)
temporal persistence. Once the effect of a finifeon the at
measured spatial persistence is understood, one can relate ) , L ,
correctly the experimental and numerical results to the theoVhereV and V= refer to spatllalrderlvatlve,s; with respect to
retical predictions. Our study shows that the spatial persisX » @1d 7(X, 1) with (7(x,) p(x’, ")) (x=x") &(t-1") is the
tence probabilitiegboth SS and FICexhibit simple scaling usual uncorrelated.random Gaqssmn noise. The dynamical
behavior as functions of the system size and the samplin§xPonent for Eq(1) is z=2, and sincal=1 in our study, the
distance. variablen defined in Sec. | is equal to 1. So, we expect both
In addition to the temporal persistence probability, thefssa@nd6ric for this system to be equal to 1[8]. Although
temporal survival probability5,15 has been shown recently the KPZ equation is nonlinear, characterizedzsB/2, it is
to represent an alternative valuable statistical tool for invesWell known that in the long time limit, the probability distri-
tigations of first-passage properties of spatially extended syfution of the stochastic height variakiiéx,t) in this equa-
tems with stochastic evolution. In the context of interfacetion is the same as that in the EW equati@re. P(h)
dynamics, the temporal survival probability is defined as the~exd—fdx(Vh)?]) in (1+1) dimensions. The static rough-
probability that the height of the interface at a fixed positionness exponenty, is the samga=1/2) for both cases. The
does not cross itime-averagedralue over timet. In con-  1+1-dimensional KPZ model differs from the EW model in

=V2h(x,t) + 5(x1t), (1)

=V2h(x,t) + [Vh(x,t)]? + 5(x,1), (2)
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the transientscaling regime, where the interfacial roughnessvalue of p in the range[0,1/2). This difference would be
grows as a power law in time, but this temporal regime is nosmall for p near zerdthe two persistence exponents have the
involved in the calculation of the spatial persistence probsame value fop=0), and maximum folp near 1/2. There-
abilities, as explained in Sec. |. As a consequence, thére, the model withp substantially different from zero pro-
steady-state spatial properties df+1)-dimensional inter- vides a numerically tractable situation where the interesting
faces governed by E@2) can be mapped, as for E@d.), into  theoretical prediction of the existence of two different non-
a stochastic process with=1. So, the expected values @fs trivial spatial persistence exponents can be tested. We also
and 6 c for the (1+1)-dimensional KPZ universality class mention that the usual dynamical scaling exponents take the
are also equal to 1/2. Thus, studies (&f+1)-dimensional following p-dependent values in the model with colored
KPZ and EW interfaces do not bring out the interesting poshoise: a=(2-d+2p)/2, B=(2-d+2p)/4. Thus, the general
sibility of different values for the spatial persistence expo-result[8], s=1-«;, is satisfied for alld and p.
nentséssand 6gc. We have investigated these aspects in a detailed numerical
To examine the theoretical predictid8] of a possible study of models that belong in the universality classes of the
difference between the values 6fsand 6z, we consider Langevin equations of Eggl) and (2). For Eq. (1) with
the case when the interface dynamics is governed by a EWincorrelated white noise, we have used a discrete stochastic
type equation with long-range spatial correlations in thesolid-on-solid mode(the Family mode[17]) which is rigor-
noise. Specifically, we consider E@L) with Gaussian col- ously known to belong to the same dynamical universality

ored noisg16] with variance given by class. For Eq(2) with uncorrelated white noise, we have
L , ) also used a discrete solid-on-solid mogek Kim-Kosterlitz
(7%, D) 7:(X" 1)) = g (X = X") St = t'), (3 model[18)). Finally, for the EW equation with colored noise,

where 0<p<<1/2 is a parameter that characterizes the spa.t-hte nuTe”Cil trhesults t\'N(TIre dqbtalr:_ed (;CI’O;T] z?]dwt_ec'ij_r]lrumer;_cald
tial correlation of the noise, and glqle;g;ﬁ):]on of the spatially discretized stochastic differentia

—y'|2p~1 !
gp(x—x’) = {|X X( |) i f|X X | #0 (4) IIl. NUMERICAL METHODS
0 if x=x".
% Simulations of the atomistic Family and Kim-Kosterlitz

We have choseng,(0) as in Ref. [16] [i.e., g,0) models are carried out using the standard Monte Carlo
=1/p(1/2)?"]. As discussed below, the SS and FIC spatialmethod for implementing the stochastic deposition rules of
persistence exponents fét +1)-dimensional interfaces de- each model. Numerical integration of the EW equation with
scribed by the EW equation with this kind of colored noisecolored noise is performed using the simple Euler method
are expected to be different from one another. This systeni3,19. We solve the(1+1)-dimensional Eq(1) with spa-
thus, provides an opportunity to examine in detail the role oftially long-range correlated noise for the real variable
the choice of the initial points in determining the form of the h(x;,t,), where t,=nAt (n=0,1,..) and x=jAx (j
decay of the spatial persistence probability. =0,1,... L-1) with periodic boundary conditions. Herat

By applying the isomorphic mapping recipe of REf] to  and Ax are the spatial and temporal grid spacings, respec-
the (d+1)-dimensional version of Eq1) with colored noise tively. Using the forward-time centered-space representation
7. Whose statistics is defined by Eq8) and(4), we obtain  [19], Eq. (1) becomes
the resulth=(z—-d+1)/2+p with z=2, implying the follow-

ing analytical expressions for the spatial persistence exponh(x;,t,.) — h(x;t,) = At h(Xj+1,tn) = 20(X;,to) + (X1, t)

nents: (Ax)?
d VAL 70,8 (7)
Oss= 2 P ) We have choseAx=1 andAt small enougHi.e., At=0.01)
in order to satisfy the stability criterionA?/(Ax)?<1. The
and spatial correlation of the noise is given by
O = 0( 3-d + P) . (6) <770(vatn) 717X tm)) = gp(xj = %) Onms (8)
2 with
Thus, the value ofsgis completely determined by the noise ( - _ L
correlation parametgr. However, based on the range of val- Ix; =% > it 1<[x-x|=< 5
ues forp, we can only infer thaty,c varies(presumably in a )
continuous manngbetweend (3-d/2) and ¢ (4-d/2) as Gp(Xj =% = L= =xD®Tif |x—xd > L
the parametep is increased from 0 to 1/2. Fat=1, this : 2
implies a change from the valug1)=1/2 to 6(3/2), ex- | 9,(0) if X -%=0,

pected to lie between 1/2 amd2)=1/4, asp changes from 0 9)
to 1/2. Since the value ofissfor d=1 goes to 0 ap ap-

proaches the value 1/2, it is clear that the values of the twwheregp(O):llp(UZ)ZP. The colored noise is generated us-
spatial persistence exponents must be different for a generalg the recipe from Ref[16]. The fast Fourier transform

051603-3



CONSTANTIN, DAS SARMA, AND DASGUPTA PHYSICAL REVIEW E59, 051603(2004

operation that is used in the noise-generation procedure comacterized by a height variable within this interval represent
strains the system size to be an integral power of 2. Due tthe subensemble of lattice positions involved in the sampling
the use of periodic boundary conditiohghich are also im-  procedure necessary for measurPgc(x).
posed on the noise correlation function, see Bjl, the The spatial survival probabilities corresponding to the SS
range ofx over which spatial correlations and persistenceand FIC conditions are calculated similarly to the corre-
properties are meaningfully measured is of the orddr/&.  sponding persistence probabilities, except that the stochastic
The SS spatial persistence probabilBgdXy,%+x) is  variable under consideration becont&€z,+x’)—<h). Thus,
measured at a fixed timg (which is much larger than the
time ty,~ L? required for the interface roughness to satyrate SsdX0.Xo +X) = Prolsgrih(xo +x’) = (h)] = const,
as the probability that the interface height variable does not 00<x <x 0% € Ssd (12)
cross its valueh(xg,tp), at the initial pointxy as one moves
along the interface from the poimg to the pointxy+x. This ~ and
probability is averaged over all the sites in a steady-state _ N _
configuration and also over many independent realizations of Sric(Xo.Xo * x) = Prot{sgrih(x, +x') = (h)] = const,
the stochastic evolution. Thus, 00=x"=x, 00Xy € Sgc}- (13

PsdXo0,%p + X) = Prol{sgrih(xy + x") — h(xo)]

—const, DO<X <x X e Sed, IV. RESULTS AND DISCUSSIONS

(10) A. Solid-on-solid models

In the solid-on-solid Family and Kim-Kosterlitz models,
e interface configuration is characterized by a set of integer
eight variablegh;};-;, corresponding to the lattice sités
, ... L, with periodic boundary conditions. Since all the
measurements of the spatial persistence and survival prob-
bilities are done in the steady-state regitne., in the re-
gime where the interfacial roughness has reached a time-
independent saturation valjewe used relatively small
systems withL ~200-3000 in order to be able to achieve
_ / the the steady state within reasonable simulation times. The
Pric(Xo.Xo +X) = Probisgrih(o + ') = hixo)] resulting stea)(/jy-state interfacial profile, corresponding to a
=const, DO<x' =<x 0% € Spich final time t,> >L7 is used to compute the spatial persis-
(11)  tence and survival probabilities. The calculationRal{x) is
relatively simple: it involves measuring the fraction of initial
Since the persistence probabilities are averaged over tHettice positions(all possible choices of the initial point are
choice of the initial poini,, we omit writingx, explicitly in  allowed for which the interface height has not returned to
the arguments oPssand Pg,c from now on, while stressing the height of the initial pointfor persistence probabilijyor
the important fact that the ensemble of initial sites used irto the average height levé) (for survival probability over
the averaging process determines which one of the two peg distancex, averaged over many independent realizations
sistence probabilities is obtained. We consider two different~1§_1o4) of the Steady state Conﬁguration_ Measurements
methods for measurinBgc(x), depending on the type of the of Prc(x) or S;c(x) involve, in addition to these steps, a
model (atomistic solid-on-solid model or spatially dis- preliminary selection of a subensemble of lattice sites which
cretized Langevin equatigmeing studied. In the former case are characterized by a fixed and small vatief the height
where the height variables are integers, the FIC spatial peimeasured relative to the spatial average. Only the sites that
sistence probability measurement involves a sampling procaselong to this subensemblee., only the sites witth,=H
dure from the subset of sites characterized by a fixed integef(h)) are used as initial points in the FIC measurements.
value of the heightmeasured from the average), of the Two distinct length scales have to be taken into consider-
heights of all the sites at timg) which is substantially ation in the interpretation of the numerical results for the
smaller than the typical value of the height fluctuations measpatial persistence probability: the sizef the sample used
sured by the saturation width of the interface profile. In cal-in the simulation, and the sampling distanée which de-
culations using the direct numerical integration techniquenotes the spacing between two successive points where the
the height variable can take any real value. So, the probabiheight variables are measured in the calculation of the per-
ity of finding a fixed value of the stochastic height variable is sistence probability. The minimum value 6% is obviously
infinitesimally small. For this reason, fiXiI’]g a reference |eVE|one lattice Spacing, but one can use a |arger integra| value of
H and sampling over the sites with(x,to) =(h)+H is use-  sxin the calculation of persistence and survival probabilities.
less. We, therefore, consider in this case a continuous inteFor example, a calculation of the persistence probability with
val of height valuegsymmetric with respect to the average sx=m would correspond to checking the heights of only the
height(h)) with width w, which is considerably smaller than sites with index+jm, wherei, is the index of the initial site
the amplitude of the height fluctuations. The positions charandj=1,2,... . While the importance of. in the measure-

where sgfy] represents the sign of the fluctuating quantityth
y, andSgsis the ensemble containing all the lattice sites inh
a steady-state configuration. The FIC spatial persistence
probability P c(Xg, Xo+X) is obtained in a similar manner,
except that the average is performed over a particular su
ensemble of the steady-state configuration sites
Skic C Ssg characterized byinite values of the height vari-
able and its spatial derivatives:
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FIG. 1. The steady state spatial persistence probaliigyx), for (1+1)-dimensional EW interfaces with white noise, obtained using the
discrete Family model. Panéd): Double-log plots ofPsdx) vs x for a fixed sampling distancéx=1, using three different values &f as
indicated in the legend. Pangd): Double-log plots ofPsdX) vs x/ &x for a fixed system sizd,=1000, and three different values &f, as
indicated in the legend.

ment of P(x) is obvious(it sets the maximum distance for qualitative behavior of théemporalsurvival probability in
which P(x) can be meaningfully measuredhe effect ofox  the steady state of the Family modéb].
is rather intricate and has to be carefully investigated. In Fig. We now return to the dependence of the persistence prob-
1(a), we start to analyze these effects by lookingPagx) for ~ abilities on the sample size and the sampling distanaix.
EW-type interfaces. We note that whBg4x) is measured in  SinceL and ox are the only two length scales in the problem
systems with different sizes, using the smallest possibléthe lattice parameter serves as the unit of lepgths rea-
value for & (i.e., 5x=1), the exponent associated with the sonable to expec{15] that the persistence probabilities
power-]aw decay of the persistence probab"”:y does noWOUld be functions of tthimenSionlesssca”ng variables
change, but there is an abrupt downward departure from ¥/L and &x/L. If this is true, then plots of vs x/L for
power-law behavior near=L/2. It is not difficult to under-  different sample sizes should show a scaling collapse if the
stand this behavior qualitatively: as discussed earlier, medatio 6x/L is kept constant. A similar scaling behavior of the
surements of spatial correlations and persistence probabilfemporal survival probability as functions bfand the sam-
ties in a finite system of siz& with periodic boundary Pling time dt (in that case, the scaling variables afe* and
conditions are meaningful only for distances smaller thardt/L?) was found in Ref[15]. As indicated in panelgb-d) of
L/2. In Fig. 1b), we have shown the results fBdx) when Fig: 2, we have used various values for the sampling distance
L remains fixed andx is varied. Since the the persistence o in the measurement dPsdx) and Pgc(x). We observe
probability is, by definition, equal to unity for=x [see Eq.  that when the sampling distance is increased in proportion to
(10)], we have plottedPssas a function ok/ 8x in this figure ~ the system sizéso thatox/L is held fixed, all the Psdx)
to ensure that the plots for different valueséxfcoincide for ~ curves collapse when plotted vgL [see panelb)]. This
small values of thex coordinate. The plots for differenix ~ confirms that the scaling form of the steady-state persistence
are found to splay away from each other at large values oprobability is:
x/ &%, with the plots for largersx exhibiting more pro-
nounced downward bending. Again, the reason for this be- Psdx,L, %) = f1(x/L, /L), (14
havior is qualitatively clear: since a double-log plotRy{x)
vs X begins to deviate substantially from linearity asp-
proached /2 [see Fig. 1a)], the downward bending of the
plots in Fig. Xb) (which are all for a fixed value df) occurs Xp<1. . .
at a smaller value ok/x for larger 8. A more detailed Let us turn our attention t&c(x). In the data shown in
scaling analysis of the dependence of the persistence propanel(c) of Fig. 2, we have chosen the subensengijig of
abilities onx and o is described below. sampling positions to contain only the lattice sites whose
In Fig. 2, we show the results for spatial persistence and€ighth; is equal to the average valgk) (i.e., H=0). Obvi-
survival probabilities for the discrete Family model. It is ob- Ously, in this case the definitions for persistence and survival
vious from the plots that the spatial persistence probabilitie®robabilities become identical, since the probability that the
PsdX) [panel(a)] and Prc(x) [panel(c)] exhibit power-law height_variablle does not returrj.to the original ya{ue., hi
decays over an extended rangexafalues. The abrupt decay =(h)) is precisely the probability that the height variable
to zero neax=L/2 is due, as discussed above, to finite sizedoes not reach the average levéh. We find that 6 c
effects. The spatial persistence exponents are extracted from0.48 using a system with=1000 anddx=1 and consid-
the power-law fits shown in the log-log plots as dashedering the subensemble of sites with=0. We note that a
straight lines. We find thalss=0.51, is in good agreement remarkable collapse dPgc(x) vs x/L curves for different
with the expected value 1/2. However, it is clear that thevalues ofL is again obtained wheidx is adjusted to be
steady-state survival probabilitgsdx), shown in Fig. 2a), proportional to the system sizZe, as shown in pane(c).
does not exhibit a power-law behavior. This is similar to theMore interestingly, we observe that fixing the lev¢lto a

where the functiorf,(x;,X%,) shows a power-law decay with
exponentfssas a function ofx; for small values ofx; and
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FIG. 2. The spatial persistence probabilitiBgdx) andPg,c(x), and the spatial survival probabilitgs{x), obtained from simulations of
the Family model if1+1) dimensions. In panel&@) and(b) we show the data faPs{x) andSsdx), while in panelgc) and(d) we display
the data folPg c(x). Panel(a): Ps{x) andSsdx) for L=1000,8x=1. The dashed line represents the best fit ofthgx) data to a power-law
form. Panelb): Finite-size scaling oPsdx,L, 8x). Three probability curves are obtained for three different sample sizes with the same value
for the ratio &x/L=1/200. Panelc): Scaling of Prc(X,L, 8x,H) for the same values df and &x as in panelb). Pgc is calculated by
sampling over lattice sites witH=0. Pane{d): Scaling ofPg,c(x,L, 8, H) for three different sample sizes with the same value for the ratio
SX/L, sampling over two subsets of lattice sites with the same valué/bf(«=0.5): 1/1/200 (upper ploj and 44200 (lower plo.

nonzero value introduces a “height” scale in the problem thashown in Fig. 8b), the SS persistence probability obeys the
is related to the steady-state value of the interface widthscaling form of Eq(14). In Fig. 3d), we display the results
Since this width is proportional tb*, wherea is the rough-  for the measuredPr ¢ for systems with different sizes and
ness exponent, we expect the dependencerpf on H for  sampling distances such th&t/L remains constant and con-
nonzero values off to be described by the scaling variable sidering two different subsets of sampling sites, each subset
H/L“. We observe that if the levél is chosen to be propor- being characterized by a fixed value ldfL*. These results
tional to L, then the calculated values Bf,c for different  are in perfect agreement with the scaling form of Ekp).
sample sizes, obtained using valuesdefsuch that the ratio Equations(14) and (15) provide a complete scaling de-
o/ L is also held constant, exhibit a perfect scaling collapsescription of the SS and FIC persistence probabilities(for
as shown in pangld) of Fig. 2. This observation leads us to +1)-dimensional fluctuating interfaces belonging to two dif-
the conclusion that the scaling form of the FIC persistencéerent universality classege., EW and KPZ modeled us-

probability with nonzero values of the level is ing discrete solid-on-solid models. The associated spatial
persistence exponent#s and 6 c are in good agreement
Pric(X,L, o%,H) = fo(x/L, SX/L,HIL®), (15  with the theoretical valuel8]. However, these studies do not

illustrate the interesting possibility of a dependence of the
wheref,(x1, X2, X3) exhibits a power-law behavior with expo- persistence exponent on the sampling procedure used in the
nent Orc as a function ofx; for small x; if x,<1 andx;  selection of the initial sites used in the calculation of the
—0. As the value of; is increased, the range &f values  persistence probability: the two persistence expon#gts
over which the power-law behavior is obtained decreases arghd 6, have the same value f¢t + 1)-dimensional EW and
a more rapid decay of the probability is noticed. KPZ interfaces. We present and discuss below the results for

The predictions concerning the scaling behavior of thea model where these two exponents have different values.
spatial persistence probabilities are confirmed by the results

for the atomistic Kim—Kosterlitz model. The same discussion
for Fig. 2 applies to Fig. 3, where we have shown the results
for the Kim-Kosterlitz model. We find thafiss=0.52 [see In order to measure the spatial persistence and survival
Fig. 3@)], in good agreement with the expected value of 1/2 probabilities in this system, we have applied the steps de-
and also thatfrc=0.47, using a rather small simulation scribed above on systems of size€®-21° using 100-400
with L=300 andéx=1 and sampling over the subensembleindependent realizations for averages. While the calculation
of sites with height at the average lejske Fig. 8&)]. As  of Psdx) and Ssdx) involves the same method as the one

B. EW equation with colored noise

051603-6



SPATIAL PERSISTENCE AND SURVIVAL..

PHYSICAL REVIEW E 69, 051603(2004

B Ja, 3 0 I E
E T, a) 3 E o e, b 3
PR — 01 =
® E RGN ]
K N E c ]
001 4 001F o L=500, sx=1 =
F E E + L=2000,8x=4 E
- [+ L=1000 ] [ | ~ L=4500,5x=9 o ]

Lol Lol L ||||||$ Pl Lol R R |

0.001 1 10 100 1000 0001 0.01 0.1 1

X x/L
[T — T Nraaaas — ——rr
3 L o E E ] E
E CQ... E F !..“. d) 3
0.15— E 01 .
= £ 1% E 3
2 [ 1% [| o L=300, 8x=1,H=1 1
& ol 1e ooil| * L=1200.6x=4 H=2 ]
E [o L=300, sx=1,H=0 E TE| - L=2700.5x=9, H=3
E |+ L=1200,5x=4,H=0 3 b|® L=300, 5x=1,H=3 3
" | x L=2700,5x=9,H=0 ' r |t L=1200,5x= 1 H=6 y
0,001 . 0.001f| v L=2700,5x =9, H=9 §_:
E il il N Y- E | R A
0.01 01 1 0.01 0.1
x/L x/L

FIG. 3. The spatial persistence probabilitigdx) and Pg c(x), for the (1 +1)-dimensional Kim-Kosterlitz model which is in the KPZ
universality class. As in Fig. 2, in pandls) and(b) we show the data foPsdx). Panelgc) and(d) display the data foPg,c(x). Panel(a):
Psdx) for L=1000, &x=1. Panel(b): Finite-size scaling oPsdXx,L, 8x). Three probability curves are obtained for three different sample
sizes with the same value for the rati®/L=1/500. Pane{c): Scaling ofPgc(x,L, 8x,H), obtained by sampling over the lattice sites with
H=0, for three different valuefsame as those in pan@d)] of L and ox. Panel(d): Scaling ofPgc(x,L, x,H) for three different sample
sizes with the same value for the ra#i/L, sampling over two subsets of lattice sites with the same valt/ bf(e=0.5): 1//300 (upper
plot) and 3A'300 (lower plof).

used in the case of the solid-on-solid models, for measuringh) (in the case of survival probabilityup to a distance
Pric(X) and Sqc(X) we have selected the subensemble offrom the pointx;. The numerical results for these probabili-
lattice sites whose heightgx;, tp) at timet,>L” satisfy the  ties, along with a finite-size scaling analysis of their behav-
condition (h)—w/2<h(x;,to) <{h)+w/2, where(h) is the ior, are shown in Figs. 4 and 5.

spatial average of the height at time The widthw of the We find that both SS and FIC spatial persistence prob-
sampling window has to be chosen to be much smaller thaabilities for (1+1)-dimensional interfaces described by the
the amplitude of the interface fluctuations, but large enouglEW equation with colored noise exhibit the expected power-
to include a relatively large fraction of the total number of law behavior as a function of, as shown in Fig. 4, while the
sites in order to ensure adequate statistics. Under these cBS survival probability shows a more compblegependence
cumstances we have computed the fraction of these selectgsee Fig. 4a)]. Further work is needed in order to understand
sites which do not reach the “original” heighitx;,to) (in the  the behavior ofSsdx). When a relatively small system with
case of persistence probabilitgr the average height level sizeL=2° is used, the numerical results for the spatial per-

] .. 3
T — 3 : . + P=01]
: ] N "‘w‘.:::‘“h = p=02] ]
= r ] | g 4
R | J
% | N i
“ \ 2 | ® .
g oE ) |
—_ F + P =0.1 [persistence] ' ® Z
= ) 01 =
Z - p =0.1 [survival] F T ]
7 L h [ Eoak ]
a% I x p =0.2 [persistence] [ «» ]
<P =0.2 [survival] r b) ]
001 E - ]
E 1 1 11 111 I 1 1 11 1111 I 1 ] 1 1 111111 | 1 1 111111 | 1
1 10 100 1 10 100

X X

FIG. 4. Spatial persistence and survival probabilities for the EW equation with spatially correlated noisgaPdhg{x) and Sgdx)
using a fixed system size=2% two values of the noise correlation paramejer0.1 and 0.2 and sampling distancéx=1. Panel(b):
Pric(x) and S;ic(x) (insed, using the same parameters as in paagland sampling initial sites from a band of width=0.10 centered at
the average height. The straight lines drawn through the data points in these double-log plots represent power-law fits.
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FIG. 5. Finite-size scaling of the persistence probabilitRs{x) and Prc(x), and the FIC survival probabilit:c(x) for the EW
equation with spatially correlated noise. The noise correlation paramgieiOi? and the sampling intervak takes three different values.
Panel(a): The SS persistence probabiliBsdx, L, ) for three different sample sizes with a constant rasolL=1/28. Panel(b): The FIC
persistence probabilitPg,c(x,L, 8x,w) with fixed values of the quantitiegx/L (=1/2%) andw/L* (=0.1/25), where @=0.7. Inset:
Same as in the main figure, but for the FIC survival probabs(x,L, 5, w).

sistence exponents extracted from the power-law fits showstudy exhibit the correct trend, increasing in magnitude as
in Fig. 4 (for p=0.1, we obtainfss=0.43 andfrc=0.38, decreases. Also, the measured FIC spatial persistence expo-
while for p=0.2, the exponent values are found to &%  nents satisfy the constraint 1#46g,c<1/2. Our numerical
=0.37 andég,c=0.31) appear to be affected by finite-size results also confirm the interesting theoretical prediction that
effects. Specifically, the values @&sextracted from fits to  the SS and FIC spatial persistence exponents are different for
the numerical data are systematically larger than the theoretthe EW equation with spatially correlated noise.

cally expected values¢ss=0.4 for p=0.1 and 0.3 forp We have found that the scaling forms of Eq$4) and
=0.2 [see Eq.(5)]. Similar deviations from the analytical (15) also provide a correct description of the numerically
results are also found for the usual dynamical scaling exposbtained persistence and survival probabilities for the EW
nentsa and 8. We have checked that simulations of larger equation with spatially correlated noise. This is illustrated in
samples bring the measured values of the exponents closerfy. 5. In Fig. §a), we show that the results fé&sdX, L, oX)

the expected values, but the convergence is rather slowbtained for different values df and &x fall on the same
These finite-size effects become more pronounced as th&aling curve when plotted againstL if the ratio ox/L is
noise correlation parametgiis increased. In Fig. 4, we show held fixed. This is precisely the behavior predicted by Eq.
the results forp=0.1 andp=0.2, but we have verified from (14). As shown in Fig. B), the data forPgc(x,L, 6%, w)
simulations with larger values gf that the difference be- a|so exhibit good finite-size scaling collapseSifis varied in
tween the expected and measured valueggihcreases @8 proportion toL and the widthw of the sampling band is

is increased. This is expected because the spatial correlatigicreased in proportion th®. This is in perfect analogy with

of the noise falls off more slowly with distance @sis in-  the scaling behavior of the FIC persistence probability for
creased, thereby making finite-size effects more pronounceghe discrete stochastic models discussed in Sec. IV A, with
Another possible source of the discrepancy between the nyhe variablew playing the role ofH in Eq. (15). This sug-

merical and exact results for the expon@ggis the spatial  gests that the scaling behavior of the FIC persistence prob-
discretization used in the numerical work. The effects of usqpility in the continuum EW equation is of the form

ing a finite discretization scalAx on the observed scaling

behavior of continuum growth equations in the steady state Pric(X,L, 6x,w) = f3(x/L, oX/L,wWIL?), (16)
have _been studied in Ref20], where it was f°“.”d that the \here the functiornf; has the same characteristics fasin
effective value of the roughness exponenbbtained from Eq. (15. A similar scaling description also applies to

calculations of the local width using a finitex is smaller S-c(x), as shown in the inset of Fig (. This scaling de-
than its actual value. Smc@ssz_l—a,_the values 0fflss ob- scription should be useful in the analysis of experimental
tained from our calculations withx=1 are expected to be ..~ equilibrium step fluctuationis,6] because the im-
larger than their exact values. Our results are consistent wit ges obtained in experiments provid,e the values of a real
this _expectatlon_._As shown in the Inset of Figbj the FIC “height” variable (position of a step-edgeat discrete inter-
survival probabilitySc(x) behaves similarly tdPg c(x) for vals of a finite sampling distancex.

both p=0.1 and 0.2, exhibiting a power-law decay with an

exponent(of 0.38 and 0.33 fop=0.1 and 0.2, respectively

tha}t is very close t@c. T.his is consistent v_vith the expec- V. SUMMARY AND CONCLUDING REMARKS
tation that the FIC persistence and survival probabilities
should become identical as the width parameteised in the In this study, we have analyzed the spatial first-passage

selection of initial sites approaches zeio this limit, both  statistics of fluctuating interfaces using the concepts of spa-
persistence and survival probabilities measure the probabilitiial persistence and survival probabilities. Specifically, we

of not crossing the average heigHtinally, we point out that have presented the results of detailed numerical measure-
both SS and FIC exponents obtained from the numericaients of the SS and FIC spatial persistence probabilities for
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several models of interface fluctuations. Results for the spaspatial persistence probabilities in such models. The numeri-
tial survival probabilities are also reported. These resultgal results reported in the preceding sections show that the
confirm that the concepts of persistence and survival are usgteady-state persistence probabilydx) exhibits a power-

ful in analyzing the spatial structure of fluctuating interfaces.Jaw decay inx only for values ofx that are much smaller
The exponents associated with the power-law decay of thghan the sample size. Since the roughness of the steady-
spatial persistence probabilities as a function of distance state interface of super-rough models at length scales much
are valuable indicators of the universality class of the stogmaier thanL is described by the local exponent, we
chastic processes that describe the dynamics of surface flugyhect the steady-state spatial persistence probability in such

tuations. Our results for these exponents for . : _
; X : ; . models to exhibit a power-law decay with exponégi=1
(1+1)-dimensional interfaces in the EW and KPZ unlversal—_aI for x<L. For example, the one-dimensional Mullins-

ity classes are in good agreement with the correspondingIerring model[22] is super-rough withy;=3/2 anda;=1.

analytic predictions. We have also obtained analytic result?:or this model, the above argument suggests that the steady-

for the spatial persistence _exponents in thestate spatial persistence expon is equal to 0, which
(1+1)-dimensional EW equation with spatially correlated patial p ponegs is eq '
grees with the exact result reported in Ré&i.

noise, and reported the results of a numerical calculation of AN tant feat f ) tiqation is the devel
the persistence and survival probabilities in this system. n important feature of our investigation 1S the develop-
While the numerical results show strong finite-size effectsMeNt of & scaling description of the effects of a finite system

the qualitative trends predicted by the analytic treatment aréiZz€ and a finite sampling distance on the measured persis-
confirmed in the numerical work. In particular, the numericall€nce probabilities. We have also shown that the dependence
results show evidence for an interesting, theoretically pre9f the FIC persistence and survival probabilities on the ref-
dicted difference between the persistence exponents obtain€fence leveH (in atomistic modelgor the widthw of the

for two different ways of sampling the initial points used in Pand(in continuum modelsused in the selection of the sub-
the measurement of the spatial persistence probability. Waet of sampling sites is described by a scaling form. These
also find that the steady-state survival probability has a comscaling descriptions would be useful in the analysis of ex-
plex spatial behavior that requires further investigations. IrPerimental and numerical data on fluctuations in spatially
the past, there has been some confusion in the literatuf@xtended stochastic systems.

about the distinction between the persistence and survival SOome of the numerical results reported hesech as the
probabilities[15]. Our study shows that these two quantitiesPehavior of the SS survival probability and the forms of the
are very different in the SS situation, whereas the distinctiors¢@ling functions that describe the dependence of the persis-
between them essentially disappears in the FIC situation. t€nce probabilities on the parametdrs ox, and H or w)

The numerical results reported here are for models thaghould be amenable to analytic treatment, especially for the
exhibit “normal” scaling behavior with the same local and EW equation with white noise, whose spatial properties can
global scaling properties of interface fluctuations. There ar®® mappeds] to the temporal properties of the well-known
other models of interface growth and fluctuations that exhibif@ndom-walk problem. Further work along these lines would
“anomalous” scaling21], for which the global and local b€ very interesting. The spatial persistence and survival
scaling properties are different. In such models, the ug|oba|vprobab|llt!es considered here sh_ould be measurable in imag-
roughness exponent, that describes the dependence of theind experiments on step fluctuatiofts6]. Such experimental
interface width in the steady state on the sample size investigations would be most welcome.

(W(tg,L) L% for to>L? is different from the “local” expo-
nent «; that describes thex dependence of the height-
difference  correlation  function g(x)= ([ h(x+Xxg,tp)
—h(xg,t0) 192 in the steady statéy>L?) for small x (g(X) This work is partially supported by the US-ONR, the
xx“ for x<L). The exponenty, is greater than unitythe  LPS, and the NSF-DMR-MRSEC at the University of Mary-
steady-state interface is “super-roughin such cases, land. The authors would like to thank Satya N. Majumdar for
whereas the local exponeat is always less than or equal to several useful discussions. M.C. acknowledges useful discus-
unity. It is interesting to enquire about the behavior of thesions with E.D. Williams and D.B. Dougherty.

ACKNOWLEDGMENTS

[1] For a review on temporal persistence, see S. N. Majumdar, and |. Yekutieli, Physica A214, 396 (1995; W. Y. Tam, R.

Curr. Sci. 77, 370(1999. Zeitak, K. Y. Szeto, and J. Stavans, Phys. Rev. L&8.1588
[2] S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Phys. (1997); B. Yurke, A. N. Pargellis, S. N. Majumdar, and C. Sire,
Rev. Lett. 77, 2867 (1996; B. Derrida, V. Hakim, and R. Phys. Rev. E56, R40(199%; G. P. Wong, R. W. Mair, R. L.
Zeitak, ibid. 77, 2871(1996. Walsworth, and D. G. Cory, Phys. Rev. Le86, 4156(2001).
[3] J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray, [5] D. B. Dougherty, I. Lyubinetsky, E. D. Williams, M. Constan-
and C. Sire, Phys. Rev. B6, 2702(1997); H. Kallabis and J. tin, C. Dasgupta, and S. Das Sarma, Phys. Rev. L&%.

Krug, Europhys. Lett45, 20(1999. 136102(2002.

[4] M. Marcos-Martin, D. Beysens, J. P. Bouchaud, C. Godreche, [6] D. B. Dougherty, O. Bondarchuk, M. Degawa, and E. D. Wil-

051603-9



CONSTANTIN, DAS SARMA, AND DASGUPTA PHYSICAL REVIEW E59, 051603(2004

liams, Surf. Sci.527, L213(2003. Rev. E 64, 015101R) (200D.
[7] J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and M. J. [15] C. Dasgupta, M. Constantin, S. Das Sarma, and S. N. Majum-
Alava, Phys. Rev. Lett90, 024501(2003. dar, Phys. Rev. 69, 022101(2004).
[8] S. N. Majumdar and A. J. Bray, Phys. Rev. Le86, 3700 [16] N.-N. Pang, Y.-K. Yu, and T. Halpin-Healy, Phys. Rev.522,
(200D). 3224(1995.
[9] W. Feller,Introduction to Probability Theory and Its Applica- [17] F. Family, J. Phys. A19, L441 (1986.
tions, 3rd ed. Vol.1(Wiley, New York, 1968. [18] J. M. Kim and J. M. Kosterlitz, Phys. Rev. Let62, 2289
[10] T. W. Burkhardt, J. Phys. A26, L1157 (1993; Y. G. Sinai, (1989.
Theor. Math. Phys90, 219(1992. [19] W. H. Presset al., Numerical RecipegsCambridge University,
[11] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&, Cambridge, England, 1989
889 (1986. [20] J. Buceta, J. Pastor, M. A. Rubio, and F. J. de la Rubia, Phys.
[12] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. Rev. E 61, 6015(2000.
A 381, 17 (1982. [21] S. Das Sarma, S. V. Ghaisas, and J. M. Kim, Phys. Re49E
[13] J. Garcia-Ojalvo and J. M. Sanchbloise in Spatially Ex- 122 (1994).
tended System@pringer, Berlin, 1999 [22] W. W. Mullins, J. Appl. Phys 28, 333(1957%); C. Herring,ibid.

[14] S. N. Majumdar, A. J. Bray, and G. C. M. A. Ehrhardt, Phys. 21, 301(1950.

051603-10



