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We report the results of numerical investigations of the steady-state(SS) and finite-initial-conditions(FIC)
spatial persistence and survival probabilities fors1+1d-dimensional interfaces with dynamics governed by the
nonlinear Kardar-Parisi-Zhang equation and the linear Edwards-Wilkinson(EW) equation with both white
(uncorrelated) and colored(spatially correlated) noise. We study the effects of a finite sampling distance on the
measured spatial persistence probability and show that both SS and FIC persistence probabilities exhibit simple
scaling behavior as a function of the system size and the sampling distance. Analytical expressions for the
exponents associated with the power-law decay of SS and FIC spatial persistence probabilities of the EW
equation with power-law correlated noise are established and numerically verified.
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I. INTRODUCTION

The concept of temporal persistence[1], which is closely
related to first-passage statistics, has been used recently to
study various non-Markovian stochastic processes both theo-
retically [2,3] and experimentally[4–7]. Another quantity of
interest in the study of the statistics of spatially extended
systems is its natural analog, thespatial persistence prob-
ability. This idea has been investigated theoretically[8] in
the context ofsd+1d–dimensional Gaussian interfaces with
dynamics described by linear Langevin equations, where the
variable undergoing stochastic evolution is the heighthsx,td
of the interfacial sitessx is the lateral position along the
interface andt is the time). The spatial persistence probabil-
ity of fluctuating interfaces, denoted byPsx0,x0+xd, is sim-
ply the probability that the height of a steady-state interface
configuration, measured at a fixed timet0, does notreturn to
its “original” value hsx0,t0d at the initial pointx0 within a
distancex measured fromx0 along the interface. In the long-
time, steady-state limit, the spatial persistence probability
Psx0,x0+xd, which depends only onx for a translationally
invariant interface, has been shown[8] to exhibit a power-
law decay,Psx0,x0+xd,x−u. One of the interesting results
reported in Ref.[8] is that the spatial persistence exponentu
can take two values determined by the initial conditions or
selection rules imposed on the starting pointx0: (1) u=uSS,
the “steady-state”(SS) persistence exponent ifx0 is sampled
uniformly from all the sites of a steady-state configuration,
and (2) u=uFIC, the so-calledfinite-initial-conditions(FIC)
persistence exponent if the sampling ofx0 is performed from
a subsetof steady-state sites where the height variable and its

spatial derivatives arefinite. The spatial persistence prob-
abilities obtained for these two different ways of sampling
the initial point are denoted byPSSsx0,x0+xd and
PFICsx0,x0+xd, respectively.

The values of the exponentsuSS and uFIC for interfaces
with dynamics described by a class of linear Langevin equa-
tions have been determined in Ref.[8] using a mapping be-
tween the spatial statistical properties of the interface in the
steady state and the temporal properties of stochastic pro-
cesses described by a generalized random-walk equation. It
turns out that for these systems,uSS is equal to either 3/2
−n for 1/2,n,3/2 or 0 for n.3/2, where n=sz−d
+1d /2, d is the spatial dimension, andz is the standard dy-
namical exponent of the underlying Langevin equation. The
FIC spatial persistence exponent is found to have the value
uFIC=usnd, whereusnd is a temporal persistence exponent for
the generalized random-walk problem to which the spatial
statistics of the interface is mapped. Two exact results for
usnd are available in the literature:usn=1d=1/2,correspond-
ing to the classical Brownian motion[9] and usn=2d=1/4,
corresponding to the random acceleration problem[10].

Very recently, experimental measurements of the spatial
persistence probability have been performed[7] for a system
(combustion fronts in paper) that is believed to belong to the
Kardar-Parisi-Zhang(KPZ) [11] universality class. However,
the FIC spatial persistence probability is not investigated at
all in this work. Instead, the authors analyze a “transient”
spatial persistence(i.e., the probability is measured by sam-
pling over all the sites of a transient interfacial profile ob-
tained before the steady state is reached). This transient spa-
tial persistence is completely different from the FIC spatial
persistence, which is measured in the steady-state regime by
sampling a special class of initial sites. As a consequence,
additional study is required in order to understand the experi-
mental and numerical possibilities for measuringPFIC and its
associated nontrivial exponentuFIC.
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In this paper, we present the results of a detailed numeri-
cal study of spatial persistence in a class of one-dimensional
models of fluctuating interfaces. Our interest in analyzing the
spatial persistence of fluctuating interfaces is motivated to a
large extent by their important(and far from completely un-
derstood) role in the rapidly developing field of nanotechnol-
ogy, where the desired stability of nanodevices requires un-
derstanding and controlling thermal interfacial fluctuations.
In this context, the study of first-passage statistics in general,
or of the persistence probability(both spatial and temporal)
[3,8] in particular, turns out to be a very useful approach. To
address this problem we consider stochastic interfaces with
dynamics governed by the Edwards-Wilkinson(EW) [12]
and KPZ equations. For the EW equation, we consider both
white noise(uncorrelated in both space and time) and “col-
ored”noise that is correlated in space but uncorrelated in
time. The effect of noise in spatially distributed systems is an
interesting problem by itself and has been widely studied
[13]. In this paper, we investigate the effects of noise statis-
tics on the spatial structure of fluctuating interfaces using the
conceptual tool of spatial persistence probability. Using the
isomorphic mapping procedure of Ref.[8], we derive exact
analytical results for the spatial persistence exponents ofsd
+1d–dimensional EW interfaces driven by power-law corre-
lated noise. We then compare our analytical results with
those obtained from numerical integrations of the corre-
sponding stochastic equations. The use of power-law corre-
lated noise in the EW equation allows us to explore the situ-
ation where the two spatial persistence exponentsuSS and
uFIC are different.

Our numerical study also provides a characterization of
the scaling behavior of spatial persistence probabilities as
functions of the system size. Information about the system-
size dependence of persistence probabilities is necessary for
extracting the persistence exponents from experimental and
numerical data. In studies of the scaling behavior of spatial
persistence probabilities, one has to consider another impor-
tant length scale that always appears in practical measure-
ments: this is thesampling distancedx which represents the
“nearest-neighbor”spacing of the uniform grid of spatial
points where the height variablehsx,t0d is measured at a
fixed time t0. The sampling distancedx is the spatial analog
of the “sampling time”[14,15] that represents the time inter-
val between two successive measurements of the height at a
fixed position in experimental and computational studies of
temporal persistence. Once the effect of a finitedx on the
measured spatial persistence is understood, one can relate
correctly the experimental and numerical results to the theo-
retical predictions. Our study shows that the spatial persis-
tence probabilities(both SS and FIC) exhibit simple scaling
behavior as functions of the system size and the sampling
distance.

In addition to the temporal persistence probability, the
temporal survival probability[5,15] has been shown recently
to represent an alternative valuable statistical tool for inves-
tigations of first-passage properties of spatially extended sys-
tems with stochastic evolution. In the context of interface
dynamics, the temporal survival probability is defined as the
probability that the height of the interface at a fixed position
does not cross itstime-averagedvalue over timet. In con-

trast to the power-law behavior of the temporal persistence
probability(which, we recall, measures the probability of not
returning to the initial position), the temporal survival prob-
ability exhibits an exponential decay at long times, providing
information about the underlying physical mechanisms and
their associated time scales[15]. In this study, we make the
first attempt to analyze the behavior of thespatial survival
probability, Ssx0,x0+xd, defined as the probability of the in-
terface height between pointsx0 (which is an arbitrarily cho-
sen initial position) andx0+x not reaching the average level
khl [rather than the original valuehsx0,t0d]. We present nu-
merical results forSsx0,x0+xd that show that its spatial be-
havior in the SS regime is neither power law nor exponential,
while in the FIC regime, it becomes very similar to the spa-
tial persistence probability,PFICsx0,x0+xd.

The paper is organized as follows. In Sec. II, we define
the models studied in this paper, review existing analytical
results about their spatial persistence properties, and present
new analytical expressions for the spatial persistence expo-
nents for EW interfaces with colored noise in arbitrary spa-
tial dimensions. In Sec. III, we describe the numerical meth-
ods used in our study and discuss how the spatial persistence
and survival probabilities are measured in our numerical
simulations. The results obtained in ours1+1d–dimensional
numerical investigations are described in detail and dis-
cussed in Sec. IV, for both discrete stochastic solid-on-solid
models(Sec. IV A) and the spatially discretized EW equa-
tion with colored noise(Sec. IV B). Section V contains a
summary of the main results and a few concluding remarks.

II. STOCHASTIC EQUATIONS FOR FLUCTUATING
INTERFACES

We have performed a detailed numerical study of the spa-
tial persistence ofs1+1d-dimensional fluctuating interfaces,
where the dynamics is described by the well known EW
equation

] hsx,td
] t

= ¹2hsx,td + hsx,td, s1d

or alternatively by the KPZ equation

] hsx,td
] t

= ¹2hsx,td + f¹hsx,tdg2 + hsx,td, s2d

where¹ and ¹2 refer to spatial derivatives with respect to
x , andhsx,td with khsx,tdhsx8 ,t8dl~dsx−x8ddst− t8d is the
usual uncorrelated random Gaussian noise. The dynamical
exponent for Eq.s1d is z=2, and sinced=1 in our study, the
variablen defined in Sec. I is equal to 1. So, we expect both
uSSanduFIC for this system to be equal to 1/2f8g. Although
the KPZ equation is nonlinear, characterized byz=3/2, it is
well known that in the long time limit, the probability distri-
bution of the stochastic height variablehsx,td in this equa-
tion is the same as that in the EW equation(i.e. Pshd
,expf−edxs¹hd2g) in s1+1d dimensions. The static rough-
ness exponent,a, is the samesa=1/2d for both cases. The
1+1–dimensional KPZ model differs from the EW model in
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the transientscaling regime, where the interfacial roughness
grows as a power law in time, but this temporal regime is not
involved in the calculation of the spatial persistence prob-
abilities, as explained in Sec. I. As a consequence, the
steady-state spatial properties ofs1+1d-dimensional inter-
faces governed by Eq.s2d can be mapped, as for Eq.s1d, into
a stochastic process withn=1. So, the expected values ofuSS
and uFIC for the s1+1d-dimensional KPZ universality class
are also equal to 1/2. Thus, studies ofs1+1d-dimensional
KPZ and EW interfaces do not bring out the interesting pos-
sibility of different values for the spatial persistence expo-
nentsuSSanduFIC.

To examine the theoretical prediction[8] of a possible
difference between the values ofuSS and uFIC, we consider
the case when the interface dynamics is governed by a EW-
type equation with long-range spatial correlations in the
noise. Specifically, we consider Eq.(1) with Gaussian col-
ored noise[16] with variance given by

khcsx,tdhcsx8,t8dl = grsx − x8ddst − t8d, s3d

where 0ør,1/2 is a parameter that characterizes the spa-
tial correlation of the noise, and

grsx − x8d = Hux − x8u2r−1 if ux − x8u Þ 0

grs0d if x = x8.
s4d

We have chosengrs0d as in Ref. f16g fi.e., grs0d
=1/rs1/2d2rg. As discussed below, the SS and FIC spatial
persistence exponents fors1+1d-dimensional interfaces de-
scribed by the EW equation with this kind of colored noise
are expected to be different from one another. This system,
thus, provides an opportunity to examine in detail the role of
the choice of the initial points in determining the form of the
decay of the spatial persistence probability.

By applying the isomorphic mapping recipe of Ref.[8] to
the sd+1d-dimensional version of Eq.(1) with colored noise
hc whose statistics is defined by Eqs.(3) and (4), we obtain
the result,n=sz−d+1d /2+r with z=2, implying the follow-
ing analytical expressions for the spatial persistence expo-
nents:

uSS=
d

2
− r s5d

and

uFIC = uS3 − d

2
+ rD . s6d

Thus, the value ofuSS is completely determined by the noise
correlation parameterr. However, based on the range of val-
ues forr, we can only infer thatuFIC variesspresumably in a
continuous mannerd betweenu s3−d/2d andu s4−d/2d as
the parameterr is increased from 0 to 1/2. Ford=1, this
implies a change from the valueus1d=1/2 to us3/2d, ex-
pected to lie between 1/2 andus2d=1/4, asr changes from 0
to 1/2. Since the value ofuSS for d=1 goes to 0 asr ap-
proaches the value 1/2, it is clear that the values of the two
spatial persistence exponents must be different for a general

value of r in the rangef0,1/2d. This difference would be
small forr near zerosthe two persistence exponents have the
same value forr=0d, and maximum forr near 1/2. There-
fore, the model withr substantially different from zero pro-
vides a numerically tractable situation where the interesting
theoretical prediction of the existence of two different non-
trivial spatial persistence exponents can be tested. We also
mention that the usual dynamical scaling exponents take the
following r-dependent values in the model with colored
noise:a=s2−d+2rd /2, b=s2−d+2rd /4. Thus, the general
result f8g, uSS=1−a, is satisfied for alld andr.

We have investigated these aspects in a detailed numerical
study of models that belong in the universality classes of the
Langevin equations of Eqs.(1) and (2). For Eq. (1) with
uncorrelated white noise, we have used a discrete stochastic
solid-on-solid model(the Family model[17]) which is rigor-
ously known to belong to the same dynamical universality
class. For Eq.(2) with uncorrelated white noise, we have
also used a discrete solid-on-solid model(the Kim-Kosterlitz
model[18]). Finally, for the EW equation with colored noise,
the numerical results were obtained from a direct numerical
integration of the spatially discretized stochastic differential
equation.

III. NUMERICAL METHODS

Simulations of the atomistic Family and Kim-Kosterlitz
models are carried out using the standard Monte Carlo
method for implementing the stochastic deposition rules of
each model. Numerical integration of the EW equation with
colored noise is performed using the simple Euler method
[3,19]. We solve thes1+1d–dimensional Eq.(1) with spa-
tially long-range correlated noise for the real variable
hsxj ,tnd, where tn=nDt sn=0,1, . . .d and xj = jDx s j
=0,1, . . . ,L−1d with periodic boundary conditions. Here,Dt
and Dx are the spatial and temporal grid spacings, respec-
tively. Using the forward-time centered-space representation
[19], Eq. (1) becomes

hsxj,tn+1d − hsxj,tnd = DtFhsxj+1,tnd − 2hsxj,tnd + hsxj−1,tnd
sDxd2 G

+ ÎDt hcsxj,tnd. s7d

We have chosenDx=1 andDt small enoughsi.e., Dt=0.01d
in order to satisfy the stability criterion 2Dt / sDxd2ø1. The
spatial correlation of the noise is given by

khcsxj,tndhcsxk,tmdl = grsxj − xkddn,m, s8d

with

grsxj − xkd =5 uxj − xku2r−1 if 1 ø uxj − xku ø
L

2

sL − uxj − xkud2r−1 if uxj − xku .
L

2

grs0d if xj − xk = 0,

s9d

wheregrs0d=1/rs1/2d2r. The colored noise is generated us-
ing the recipe from Ref.f16g. The fast Fourier transform
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operation that is used in the noise-generation procedure con-
strains the system size to be an integral power of 2. Due to
the use of periodic boundary conditionsfwhich are also im-
posed on the noise correlation function, see Eq.s9dg, the
range ofx over which spatial correlations and persistence
properties are meaningfully measured is of the order ofL /2.

The SS spatial persistence probabilityPSSsx0,x0+xd is
measured at a fixed timet0 (which is much larger than the
time tsat,Lz required for the interface roughness to saturate)
as the probability that the interface height variable does not
cross its value,hsx0,t0d, at the initial pointx0 as one moves
along the interface from the pointx0 to the pointx0+x. This
probability is averaged over all the sites in a steady-state
configuration and also over many independent realizations of
the stochastic evolution. Thus,

PSSsx0,x0 + xd ; Probhsgnfhsx0 + x8d − hsx0dg

= const, ∀ 0 , x8 ø x, ∀ x0 P SSSj,

s10d

where sgnfyg represents the sign of the fluctuating quantity
y, andSSSis the ensemble containing all the lattice sites in
a steady-state configuration. The FIC spatial persistence
probability PFICsx0,x0+xd is obtained in a similar manner,
except that the average is performed over a particular sub-
ensemble of the steady-state configuration sites,
SFIC,SSS, characterized byfinite values of the height vari-
able and its spatial derivatives:

PFICsx0,x0 + xd ; Probhsgnfhsx0 + x8d − hsx0dg

= const, ∀ 0 , x8 ø x, ∀ x0 P SFICj.

s11d

Since the persistence probabilities are averaged over the
choice of the initial pointx0, we omit writingx0 explicitly in
the arguments ofPSSandPFIC from now on, while stressing
the important fact that the ensemble of initial sites used in
the averaging process determines which one of the two per-
sistence probabilities is obtained. We consider two different
methods for measuringPFICsxd, depending on the type of the
model satomistic solid-on-solid model or spatially dis-
cretized Langevin equationd being studied. In the former case
where the height variables are integers, the FIC spatial per-
sistence probability measurement involves a sampling proce-
dure from the subset of sites characterized by a fixed integer
value of the heightsmeasured from the average,khl, of the
heights of all the sites at timet0d which is substantially
smaller than the typical value of the height fluctuations mea-
sured by the saturation width of the interface profile. In cal-
culations using the direct numerical integration technique,
the height variable can take any real value. So, the probabil-
ity of finding a fixed value of the stochastic height variable is
infinitesimally small. For this reason, fixing a reference level
H and sampling over the sites withhsx0,t0d=khl+H is use-
less. We, therefore, consider in this case a continuous inter-
val of height valuesssymmetric with respect to the average
heightkhld with width w, which is considerably smaller than
the amplitude of the height fluctuations. The positions char-

acterized by a height variable within this interval represent
the subensemble of lattice positions involved in the sampling
procedure necessary for measuringPFICsxd.

The spatial survival probabilities corresponding to the SS
and FIC conditions are calculated similarly to the corre-
sponding persistence probabilities, except that the stochastic
variable under consideration becomeshsx0+x8d−khl. Thus,

SSSsx0,x0 + xd ; Probhsgnfhsx0 + x8d − khlg = const,

∀ 0 ø x8 ø x, ∀ x0 P SSSj s12d

and

SFICsx0,x0 + xd ; Probhsgnfhsx0 + x8d − khlg = const,

∀ 0 ø x8 ø x, ∀ x0 P SFICj. s13d

IV. RESULTS AND DISCUSSIONS

A. Solid-on-solid models

In the solid-on-solid Family and Kim-Kosterlitz models,
the interface configuration is characterized by a set of integer
height variableshhiji=1,L corresponding to the lattice sitesi
=1, . . . ,L, with periodic boundary conditions. Since all the
measurements of the spatial persistence and survival prob-
abilities are done in the steady-state regime(i.e., in the re-
gime where the interfacial roughness has reached a time-
independent saturation value), we used relatively small
systems withL,200−3000 in order to be able to achieve
the the steady state within reasonable simulation times. The
resulting steady-state interfacial profile, corresponding to a
final time t0. .Lz, is used to compute the spatial persis-
tence and survival probabilities. The calculation ofPSSsxd is
relatively simple: it involves measuring the fraction of initial
lattice positions(all possible choices of the initial point are
allowed) for which the interface height has not returned to
the height of the initial point(for persistence probability) or
to the average height levelkhl (for survival probability) over
a distancex, averaged over many independent realizations
(,103−104) of the steady state configuration. Measurements
of PFICsxd or SFICsxd involve, in addition to these steps, a
preliminary selection of a subensemble of lattice sites which
are characterized by a fixed and small valueH of the height
measured relative to the spatial average. Only the sites that
belong to this subensemble(i.e., only the sites withhi =H
+khl) are used as initial points in the FIC measurements.

Two distinct length scales have to be taken into consider-
ation in the interpretation of the numerical results for the
spatial persistence probability: the sizeL of the sample used
in the simulation, and the sampling distancedx which de-
notes the spacing between two successive points where the
height variables are measured in the calculation of the per-
sistence probability. The minimum value ofdx is obviously
one lattice spacing, but one can use a larger integral value of
dx in the calculation of persistence and survival probabilities.
For example, a calculation of the persistence probability with
dx=m would correspond to checking the heights of only the
sites with indexi0+ jm, wherei0 is the index of the initial site
and j =1,2, . . . . While the importance ofL in the measure-
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ment of Psxd is obvious(it sets the maximum distance for
which Psxd can be meaningfully measured), the effect ofdx
is rather intricate and has to be carefully investigated. In Fig.
1(a), we start to analyze these effects by looking atPSSsxd for
EW-type interfaces. We note that whenPSSsxd is measured in
systems with different sizes, using the smallest possible
value for dx (i.e., dx=1), the exponent associated with the
power-law decay of the persistence probability does not
change, but there is an abrupt downward departure from a
power-law behavior nearx=L /2. It is not difficult to under-
stand this behavior qualitatively: as discussed earlier, mea-
surements of spatial correlations and persistence probabili-
ties in a finite system of sizeL with periodic boundary
conditions are meaningful only for distances smaller than
L /2. In Fig. 1(b), we have shown the results forPSSsxd when
L remains fixed anddx is varied. Since the the persistence
probability is, by definition, equal to unity forx=dx [see Eq.
(10)], we have plottedPSSas a function ofx/dx in this figure
to ensure that the plots for different values ofdx coincide for
small values of thex coordinate. The plots for differentdx
are found to splay away from each other at large values of
x/dx, with the plots for largerdx exhibiting more pro-
nounced downward bending. Again, the reason for this be-
havior is qualitatively clear: since a double-log plot ofPSSsxd
vs x begins to deviate substantially from linearity asx ap-
proachesL /2 [see Fig. 1(a)], the downward bending of the
plots in Fig. 1(b) (which are all for a fixed value ofL) occurs
at a smaller value ofx/dx for larger dx. A more detailed
scaling analysis of the dependence of the persistence prob-
abilities onx anddx is described below.

In Fig. 2, we show the results for spatial persistence and
survival probabilities for the discrete Family model. It is ob-
vious from the plots that the spatial persistence probabilities
PSSsxd [panel(a)] andPFICsxd [panel(c)] exhibit power-law
decays over an extended range ofx values. The abrupt decay
to zero nearx=L /2 is due, as discussed above, to finite size
effects. The spatial persistence exponents are extracted from
the power-law fits shown in the log-log plots as dashed
straight lines. We find thatuSS.0.51, is in good agreement
with the expected value 1/2. However, it is clear that the
steady-state survival probabilitySSSsxd, shown in Fig. 2(a),
does not exhibit a power-law behavior. This is similar to the

qualitative behavior of thetemporalsurvival probability in
the steady state of the Family model[15].

We now return to the dependence of the persistence prob-
abilities on the sample sizeL and the sampling distancedx.
SinceL anddx are the only two length scales in the problem
(the lattice parameter serves as the unit of length), it is rea-
sonable to expect[15] that the persistence probabilities
would be functions of the(dimensionless) scaling variables
x/L and dx/L. If this is true, then plots ofP vs x/L for
different sample sizes should show a scaling collapse if the
ratio dx/L is kept constant. A similar scaling behavior of the
temporal survival probability as functions ofL and the sam-
pling time dt (in that case, the scaling variables aret /Lz and
dt /Lz) was found in Ref.[15]. As indicated in panels(b-d) of
Fig. 2, we have used various values for the sampling distance
dx in the measurement ofPSSsxd and PFICsxd. We observe
that when the sampling distance is increased in proportion to
the system size(so thatdx/L is held fixed), all the PSSsxd
curves collapse when plotted vsx/L [see panel(b)]. This
confirms that the scaling form of the steady-state persistence
probability is:

PSSsx,L,dxd = f1sx/L,dx/Ld, s14d

where the functionf1sx1,x2d shows a power-law decay with
exponentuSS as a function ofx1 for small values ofx1 and
x2!1.

Let us turn our attention toPFICsxd. In the data shown in
panel(c) of Fig. 2, we have chosen the subensembleSFIC of
sampling positions to contain only the lattice sites whose
heighthi is equal to the average valuekhl (i.e., H=0). Obvi-
ously, in this case the definitions for persistence and survival
probabilities become identical, since the probability that the
height variable does not return to the original value(i.e., hi
=khl) is precisely the probability that the height variable
does not reach the average levelkhl. We find that uFIC

.0.48 using a system withL=1000 anddx=1 and consid-
ering the subensemble of sites withH=0. We note that a
remarkable collapse ofPFICsxd vs x/L curves for different
values of L is again obtained whendx is adjusted to be
proportional to the system sizeL, as shown in panel(c).
More interestingly, we observe that fixing the levelH to a

FIG. 1. The steady state spatial persistence probability,PSSsxd, for s1+1d-dimensional EW interfaces with white noise, obtained using the
discrete Family model. Panel(a): Double-log plots ofPSSsxd vs x for a fixed sampling distancedx=1, using three different values ofL, as
indicated in the legend. Panel(b): Double-log plots ofPSSsxd vs x/dx for a fixed system size,L=1000, and three different values ofdx, as
indicated in the legend.
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nonzero value introduces a “height” scale in the problem that
is related to the steady-state value of the interface width.
Since this width is proportional toLa, wherea is the rough-
ness exponent, we expect the dependence ofPFIC on H for
nonzero values ofH to be described by the scaling variable
H /La. We observe that if the levelH is chosen to be propor-
tional to La, then the calculated values ofPFIC for different
sample sizes, obtained using values ofdx such that the ratio
dx/L is also held constant, exhibit a perfect scaling collapse,
as shown in panel(d) of Fig. 2. This observation leads us to
the conclusion that the scaling form of the FIC persistence
probability with nonzero values of the levelH is

PFICsx,L,dx,Hd = f2sx/L,dx/L,H/Lad, s15d

wheref2sx1,x2,x3d exhibits a power-law behavior with expo-
nent uFIC as a function ofx1 for small x1 if x2!1 andx3
→0. As the value ofx3 is increased, the range ofx1 values
over which the power-law behavior is obtained decreases and
a more rapid decay of the probability is noticed.

The predictions concerning the scaling behavior of the
spatial persistence probabilities are confirmed by the results
for the atomistic Kim–Kosterlitz model. The same discussion
for Fig. 2 applies to Fig. 3, where we have shown the results
for the Kim-Kosterlitz model. We find thatuSS.0.52 [see
Fig. 3(a)], in good agreement with the expected value of 1/2,
and also thatuFIC.0.47, using a rather small simulation
with L=300 anddx=1 and sampling over the subensemble
of sites with height at the average level[see Fig. 3(c)]. As

shown in Fig. 3(b), the SS persistence probability obeys the
scaling form of Eq.(14). In Fig. 3(d), we display the results
for the measuredPFIC for systems with different sizes and
sampling distances such thatdx/L remains constant and con-
sidering two different subsets of sampling sites, each subset
being characterized by a fixed value ofH /La. These results
are in perfect agreement with the scaling form of Eq.(15).

Equations(14) and (15) provide a complete scaling de-
scription of the SS and FIC persistence probabilities fors1
+1d-dimensional fluctuating interfaces belonging to two dif-
ferent universality classes(i.e., EW and KPZ), modeled us-
ing discrete solid-on-solid models. The associated spatial
persistence exponentsuSS and uFIC are in good agreement
with the theoretical values[8]. However, these studies do not
illustrate the interesting possibility of a dependence of the
persistence exponent on the sampling procedure used in the
selection of the initial sites used in the calculation of the
persistence probability: the two persistence exponentsuSS
anduFIC have the same value fors1+1d-dimensional EW and
KPZ interfaces. We present and discuss below the results for
a model where these two exponents have different values.

B. EW equation with colored noise

In order to measure the spatial persistence and survival
probabilities in this system, we have applied the steps de-
scribed above on systems of sizes,28−210, using 100–400
independent realizations for averages. While the calculation
of PSSsxd and SSSsxd involves the same method as the one

FIG. 2. The spatial persistence probabilities,PSSsxd andPFICsxd, and the spatial survival probability,SSSsxd, obtained from simulations of
the Family model ins1+1d dimensions. In panels(a) and(b) we show the data forPSSsxd andSSSsxd, while in panels(c) and(d) we display
the data forPFICsxd. Panel(a): PSSsxd andSSSsxd for L=1000,dx=1. The dashed line represents the best fit of thePSSsxd data to a power-law
form. Panel(b): Finite-size scaling ofPSSsx,L ,dxd. Three probability curves are obtained for three different sample sizes with the same value
for the ratiodx/L=1/200. Panel(c): Scaling ofPFICsx,L ,dx,Hd for the same values ofL and dx as in panel(b). PFIC is calculated by
sampling over lattice sites withH=0. Panel(d): Scaling ofPFICsx,L ,dx,Hd for three different sample sizes with the same value for the ratio
dx/L, sampling over two subsets of lattice sites with the same value ofH /Lasa=0.5d: 1 /Î200 (upper plot) and 4/Î200 (lower plot).
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used in the case of the solid-on-solid models, for measuring
PFICsxd and SFICsxd we have selected the subensemble of
lattice sites whose heightshsxj ,t0d at time t0@Lz satisfy the
condition khl−w/2øhsxj ,t0dø khl+w/2, where khl is the
spatial average of the height at timet0. The widthw of the
sampling window has to be chosen to be much smaller than
the amplitude of the interface fluctuations, but large enough
to include a relatively large fraction of the total number of
sites in order to ensure adequate statistics. Under these cir-
cumstances we have computed the fraction of these selected
sites which do not reach the “original” heighthsxj ,t0d (in the
case of persistence probability) or the average height level

khl (in the case of survival probability) up to a distancex
from the pointxj. The numerical results for these probabili-
ties, along with a finite-size scaling analysis of their behav-
ior, are shown in Figs. 4 and 5.

We find that both SS and FIC spatial persistence prob-
abilities for s1+1d-dimensional interfaces described by the
EW equation with colored noise exhibit the expected power-
law behavior as a function ofx, as shown in Fig. 4, while the
SS survival probability shows a more complexx dependence
[see Fig. 4(a)]. Further work is needed in order to understand
the behavior ofSSSsxd. When a relatively small system with
size L=29 is used, the numerical results for the spatial per-

FIG. 3. The spatial persistence probabilities,PSSsxd andPFICsxd, for the s1+1d-dimensional Kim-Kosterlitz model which is in the KPZ
universality class. As in Fig. 2, in panels(a) and(b) we show the data forPSSsxd. Panels(c) and(d) display the data forPFICsxd. Panel(a):
PSSsxd for L=1000,dx=1. Panel(b): Finite-size scaling ofPSSsx,L ,dxd. Three probability curves are obtained for three different sample
sizes with the same value for the ratiodx/L=1/500. Panel(c): Scaling ofPFICsx,L ,dx,Hd, obtained by sampling over the lattice sites with
H=0, for three different values[same as those in panel(b)] of L anddx. Panel(d): Scaling ofPFICsx,L ,dx,Hd for three different sample
sizes with the same value for the ratiodx/L, sampling over two subsets of lattice sites with the same value ofH /Lasa=0.5d: 1 /Î300 (upper
plot) and 3/Î300 (lower plot).

FIG. 4. Spatial persistence and survival probabilities for the EW equation with spatially correlated noise. Panel(a): PSSsxd andSSSsxd
using a fixed system sizeL=29, two values of the noise correlation parameter(r=0.1 and 0.2) and sampling distancedx=1. Panel(b):
PFICsxd andSFICsxd (inset), using the same parameters as in panel(a), and sampling initial sites from a band of widthw=0.10 centered at
the average height. The straight lines drawn through the data points in these double-log plots represent power-law fits.
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sistence exponents extracted from the power-law fits shown
in Fig. 4 (for r=0.1, we obtainuSS.0.43 anduFIC.0.38,
while for r=0.2, the exponent values are found to beuSS
.0.37 anduFIC.0.31) appear to be affected by finite-size
effects. Specifically, the values ofuSS extracted from fits to
the numerical data are systematically larger than the theoreti-
cally expected values,uSS=0.4 for r=0.1 and 0.3 forr
=0.2 [see Eq.(5)]. Similar deviations from the analytical
results are also found for the usual dynamical scaling expo-
nentsa and b. We have checked that simulations of larger
samples bring the measured values of the exponents closer to
the expected values, but the convergence is rather slow.
These finite-size effects become more pronounced as the
noise correlation parameterr is increased. In Fig. 4, we show
the results forr=0.1 andr=0.2, but we have verified from
simulations with larger values ofr that the difference be-
tween the expected and measured values ofuSSincreases asr
is increased. This is expected because the spatial correlation
of the noise falls off more slowly with distance asr is in-
creased, thereby making finite-size effects more pronounced.
Another possible source of the discrepancy between the nu-
merical and exact results for the exponentuSS is the spatial
discretization used in the numerical work. The effects of us-
ing a finite discretization scaleDx on the observed scaling
behavior of continuum growth equations in the steady state
have been studied in Ref.[20], where it was found that the
effective value of the roughness exponenta obtained from
calculations of the local width using a finiteDx is smaller
than its actual value. SinceuSS=1−a, the values ofuSS ob-
tained from our calculations withDx=1 are expected to be
larger than their exact values. Our results are consistent with
this expectation. As shown in the inset of Fig. 4(b), the FIC
survival probabilitySFICsxd behaves similarly toPFICsxd for
both r=0.1 and 0.2, exhibiting a power-law decay with an
exponent(of 0.38 and 0.33 forr=0.1 and 0.2, respectively)
that is very close touFIC. This is consistent with the expec-
tation that the FIC persistence and survival probabilities
should become identical as the width parameterw used in the
selection of initial sites approaches zero(in this limit, both
persistence and survival probabilities measure the probability
of not crossing the average height). Finally, we point out that
both SS and FIC exponents obtained from the numerical

study exhibit the correct trend, increasing in magnitude asr
decreases. Also, the measured FIC spatial persistence expo-
nents satisfy the constraint 1/4,uFICø1/2. Our numerical
results also confirm the interesting theoretical prediction that
the SS and FIC spatial persistence exponents are different for
the EW equation with spatially correlated noise.

We have found that the scaling forms of Eqs.(14) and
(15) also provide a correct description of the numerically
obtained persistence and survival probabilities for the EW
equation with spatially correlated noise. This is illustrated in
Fig. 5. In Fig. 5(a), we show that the results forPSSsx,L ,dxd
obtained for different values ofL and dx fall on the same
scaling curve when plotted againstx/L if the ratio dx/L is
held fixed. This is precisely the behavior predicted by Eq.
(14). As shown in Fig. 5(b), the data forPFICsx,L ,dx,wd
also exhibit good finite-size scaling collapse ifdx is varied in
proportion toL and the widthw of the sampling band is
increased in proportion toLa. This is in perfect analogy with
the scaling behavior of the FIC persistence probability for
the discrete stochastic models discussed in Sec. IV A, with
the variablew playing the role ofH in Eq. (15). This sug-
gests that the scaling behavior of the FIC persistence prob-
ability in the continuum EW equation is of the form

PFICsx,L,dx,wd = f3sx/L,dx/L,w/Lad, s16d

where the functionf3 has the same characteristics asf2 in
Eq. s15d. A similar scaling description also applies to
SFICsxd, as shown in the inset of Fig. 5sbd. This scaling de-
scription should be useful in the analysis of experimental
data on equilibrium step fluctuationsf5,6g because the im-
ages obtained in experiments provide the values of a real
“height” variablesposition of a step-edged at discrete inter-
vals of a finite sampling distancedx.

V. SUMMARY AND CONCLUDING REMARKS

In this study, we have analyzed the spatial first-passage
statistics of fluctuating interfaces using the concepts of spa-
tial persistence and survival probabilities. Specifically, we
have presented the results of detailed numerical measure-
ments of the SS and FIC spatial persistence probabilities for

FIG. 5. Finite-size scaling of the persistence probabilities,PSSsxd and PFICsxd, and the FIC survival probabilitySFICsxd for the EW
equation with spatially correlated noise. The noise correlation parameter isr=0.2 and the sampling intervaldx takes three different values.
Panel(a): The SS persistence probabilityPSSsx,L ,dxd for three different sample sizes with a constant ratiodx/L=1/28. Panel(b): The FIC
persistence probabilityPFICsx,L ,dx,wd with fixed values of the quantitiesdx/L s=1/28d and w/La s=0.1/25.6d, wherea=0.7. Inset:
Same as in the main figure, but for the FIC survival probabilitySFICsx,L ,dx,wd.
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several models of interface fluctuations. Results for the spa-
tial survival probabilities are also reported. These results
confirm that the concepts of persistence and survival are use-
ful in analyzing the spatial structure of fluctuating interfaces.
The exponents associated with the power-law decay of the
spatial persistence probabilities as a function of distancex
are valuable indicators of the universality class of the sto-
chastic processes that describe the dynamics of surface fluc-
tuations. Our results for these exponents for
s1+1d-dimensional interfaces in the EW and KPZ universal-
ity classes are in good agreement with the corresponding
analytic predictions. We have also obtained analytic results
for the spatial persistence exponents in the
s1+1d-dimensional EW equation with spatially correlated
noise, and reported the results of a numerical calculation of
the persistence and survival probabilities in this system.
While the numerical results show strong finite-size effects,
the qualitative trends predicted by the analytic treatment are
confirmed in the numerical work. In particular, the numerical
results show evidence for an interesting, theoretically pre-
dicted difference between the persistence exponents obtained
for two different ways of sampling the initial points used in
the measurement of the spatial persistence probability. We
also find that the steady-state survival probability has a com-
plex spatial behavior that requires further investigations. In
the past, there has been some confusion in the literature
about the distinction between the persistence and survival
probabilities[15]. Our study shows that these two quantities
are very different in the SS situation, whereas the distinction
between them essentially disappears in the FIC situation.

The numerical results reported here are for models that
exhibit “normal” scaling behavior with the same local and
global scaling properties of interface fluctuations. There are
other models of interface growth and fluctuations that exhibit
“anomalous” scaling[21], for which the global and local
scaling properties are different. In such models, the “global”
roughness exponentag that describes the dependence of the
interface width in the steady state on the sample sizeL
(Wst0,Ld~Lag for t0@Lz) is different from the “local” expo-
nent al that describes thex dependence of the height-
difference correlation function gsxd;kfhsx+x0,t0d
−hsx0,t0dg2l1/2 in the steady statest0@Lzd for small x (gsxd
~xal for x!L). The exponentag is greater than unity(the
steady-state interface is “super-rough”) in such cases,
whereas the local exponental is always less than or equal to
unity. It is interesting to enquire about the behavior of the

spatial persistence probabilities in such models. The numeri-
cal results reported in the preceding sections show that the
steady-state persistence probabilityPSSsxd exhibits a power-
law decay inx only for values ofx that are much smaller
than the sample sizeL. Since the roughness of the steady-
state interface of super-rough models at length scales much
smaller thanL is described by the local exponental, we
expect the steady-state spatial persistence probability in such
models to exhibit a power-law decay with exponentuSS=1
−al for x!L. For example, the one-dimensional Mullins-
Herring model[22] is super-rough withag=3/2 andal =1.
For this model, the above argument suggests that the steady-
state spatial persistence exponentuSS is equal to 0, which
agrees with the exact result reported in Ref.[8].

An important feature of our investigation is the develop-
ment of a scaling description of the effects of a finite system
size and a finite sampling distance on the measured persis-
tence probabilities. We have also shown that the dependence
of the FIC persistence and survival probabilities on the ref-
erence levelH (in atomistic models) or the widthw of the
band(in continuum models) used in the selection of the sub-
set of sampling sites is described by a scaling form. These
scaling descriptions would be useful in the analysis of ex-
perimental and numerical data on fluctuations in spatially
extended stochastic systems.

Some of the numerical results reported here(such as the
behavior of the SS survival probability and the forms of the
scaling functions that describe the dependence of the persis-
tence probabilities on the parametersL, dx, and H or w)
should be amenable to analytic treatment, especially for the
EW equation with white noise, whose spatial properties can
be mapped[8] to the temporal properties of the well-known
random-walk problem. Further work along these lines would
be very interesting. The spatial persistence and survival
probabilities considered here should be measurable in imag-
ing experiments on step fluctuations[5,6]. Such experimental
investigations would be most welcome.
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